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Independence

1 Independence
Independence is a big deal in machine learning and probabilistic modeling. Knowing the “joint”
probability of many events (the probability of the “and” of the events) requires exponential amounts
of data. By making independence and conditional independence claims, computers can essentially
decompose how to calculate the joint probability, making it faster to compute, and requiring less
data to learn probabilities.

Independence
Two events, E and F, are independent if and only if:

P(EF) = P(E)P(F)

Otherwise, they are called dependent events.

This property applies regardless of whether or not E and F are from an equally likely sample
space and whether or not the events are mutually exclusive.

The independence principle extends to more than two events. In general, n events E1, E2, . . . , En
are independent if for every subset with r elements (where r ≤ n) it holds that:

P(Ea, Eb, . . . , Er) = P(Ea)P(Eb) . . . P(Er)

The general definition implies that for three events E, F,G to be independent, all of the following
must be true:

P(EFG) = P(E)P(F)P(G)
P(EF) = P(E)P(F)
P(EG) = P(E)P(G)
P(FG) = P(F)P(G)

Problems with more than two independent events come up frequently. For example: the outcomes
of n separate flips of a coin are all independent of one another. Each flip in this case is called a
“trial” of the experiment.

In the same way that the mutual exclusion property makes it easier to calculate the probability of
the OR of two events, independence makes it easier to calculate the AND of two events.
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Example 1: Flipping a Biased Coin
A biased coin is flipped n times. Each flip (independently) comes up heads with probability p, and
tails with probability 1 − p. What is the probability of getting exactly k heads?

Solution: Consider all the possible orderings of heads and tails that result in k heads. There are(n
k

)
such orderings, and all of them are mutually exclusive. Since all of the flips are independent, to

compute the probability of any one of these orderings, we can multiply the probabilities of each of
the heads and each of the tails. There are k heads and n− k tails, so the probability of each ordering
is pk(1 − p)n−k . Adding up all the different orderings gives us the probability of getting exactly k
heads:

(n
k

)
pk(1 − p)n−k .

(Spoiler alert: This is the probability density of a binomial distribution. Intrigued by that term?
Stay tuned for next week!)

2 Analytic Probability
At this point in your probability journey, you know many of the core rules of analytic probability.
That means you have a lot of tools at your disposal. Even if you understand how each tool works,
you still need to learn how to approach a problem, and how to select the right tool. Here is a picture
which briefly summarizes the many approaches we have talked about so far:

Figure 1: Analytic Probability Tools

We have introduced two properties for pairs of events: mutual exclusion and independence. Re-
member that if events are mutually exclusive, it is easy to compute the “or" of the events. If events
are independent, it is easy to compute the “and" of events. Sometimes you will be explicitly told
you can assume that a particular group of events are either independent or mutually exclusive. Other
times you can make a logical argument that they are (for example if you are hashing strings into a
hashmap, the event that a string hashes to one bucket is mutually exclusive from the event that it
hashes to another).

You can use complements and De-Morgan’s law to turn computing probability with “and" into
probability with “or" (and vice versa). This can be helpful in situations where, for example, you are
asked to calculate the probability of the “or" of two events that are independent.
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De Morgan’s Law for Probability For any two events E and F:

P((E ∩ F)C) = P(EC ∪ FC) Version 1
P((E ∪ F)C) = P(EC ∩ FC) Version 2

This often is used in conjunction with the rule that the sum of an event and its complement is 1:

P(E ∩ F) = 1 − P((E ∩ F)C) Since P(E) + P(EC) = 1
= 1 − P(EC ∪ FC) By DeMorgan’s law

P(E ∪ F) = 1 − P((E ∪ F)C) Since P(E) + P(EC) = 1
= 1 − P(EC ∩ BF) By DeMorgan’s law

Finally, there are often many ways to solve a problem. Try and come up with more than one. In all
cases sanity check your answers. All probabilities should be positive and less than or equal to 1.

Example 2: Hash Map
Let’s consider our friend the hash map. Suppose m strings are hashed (unequally) into a hash table
with n buckets. Each string hashed is an independent trial, with probability pi of getting hashed to
bucket i. Calculate the probability of these three events:

A) E = the first bucket has ≥ 1 string hashed to it

B) E = at least 1 of buckets 1 to k has ≥ 1 string hashed to it

C) E = each of buckets 1 to k has ≥ 1 string hashed to it

Part A
Let Fi be the event that string i is not hashed into the first bucket. Note that all Fi are independent
of one another. By mutual exclusion, P(Fi) = (p2 + p3 + · · · + pn).

P(E) = 1 − P(EC) since P(A) + (AC) = 1
= 1 − P(F1F2 . . . Fm) definition of Fi

= 1 − P(F1)P(F2) . . . P(Fm) since the events are independent
= 1 − (p2 + p3 + · · · + pn)

m calculating P(Fi) by mutual exclusion
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Part B
Let Fi be the event that at least one string is hashed into bucket i. Note that the Fi’s are neither
independent nor mutually exclusive.

P(E) = P(F1 ∪ F2 ∪ · · · ∪ Fk)

= 1 − P([F1 ∪ F2 ∪ · · · ∪ Fk]
C) since P(A) + (AC) = 1

= 1 − P(F1
CF2

C . . . Fk
C) by De Morgan’s law

= 1 − (1 − p1 − p2 − · · · − pk)
m mutual exclusion, independence of strings

The last step is calculated by realizing that P(F1
CF2

C . . . Fk
C) is only satisfied by m independent

hashes into buckets other than 1 through k.

Part C
Let Fi be the same as in Part B.

P(E) = P(F1F2 . . . Fk)

= 1 − P([F1F2 . . . Fk]
C) since P(A) + P(AC) = 1

= 1 − P(F1
C ∪ F2

C ∪ · · · ∪ Fk
C) by De Morgan’s (other) law

= 1 − P

(
k⋃

i=1
Fi

C

)
= 1 −

k∑
r=1
(−1)r+1

∑
i1<···<ir

P(Fi1
CFi2

C . . . Fir
C) by General Inclusion/Exclusion

where P(F1
CF2

C . . . Fk
C) = (1 − p1 − p2 − · · · − pk)

m just like in the last problem.

3 Conditional Independence

Two events E and F are called conditionally independent given a third event G, if

P(EF | G) = P(E | G)P(F | G)

Or, equivalently:
P(E | FG) = P(E | G)

An important caveat about conditional independence is that ordinary independence does not imply
conditional independence, nor the other way around.

Knowingwhen exactly conditioning breaks or creates independence is a big part of building complex
probabilistic models; the first few weeks of CS 228 are dedicated to some general principles for
reasoning about conditional independence. We will talk about this in another lecture. I included an
example in this handout for completeness:
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Example 3: Fevers
Let’s say a person has a fever if they either havemalaria or have an infection.We are going to assume
that getting malaria and having an infection are independent: knowing if a person has malaria does
not tell us if they have an infection. Now, a patient walks into a hospital with a fever. Your belief
that the patient has malaria is high and your belief that the patient has an infection is high. Both
explain why the patient has a fever.

Now, given our knowledge that the patient has a fever, gaining the knowledge that the patient has
malariawill change your belief the patient has an infection. Themalaria explains why the patient has
a fever, and so the alternate explanation becomes less likely. The two events (which were previously
independent) are dependent when conditioned on the patient having a fever.
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